
#RSAC

SESSION ID:

#RSAC

SESSION ID:

Łukasz Siewierski (@maldr0id)

Challenges in
Android Supply Chain
Analysis

MBS-R09

Reverse Engineer, Android Security (Google)

#RSAC

• What does an Android device and system updates go through
before its first public sale?

• What are technical challenges in analysing Android system
images?

• Case studies

Agenda

2

#RSAC#RSAC

The journey of an Android device

#RSAC

The journey of an Android device

4

#RSAC

Approval process for Android devices

5

CTS (Compatibility Test Suite) Ensuring compatibility with AOSP

GTS (GMS Requirements Test Suite)
Requirements for any devices that want to
license Google apps

VTS (Vendor Test Suite)
Compatibility with the Hardware Abstraction
Layer (HAL)

BTS (Build Test Suite)
Security review for malware and other
harmful behaviors in binaries / framework

STS (Security Test Suite)
Checks if security patches have been applied
correctly

#RSAC

Android Compatibility Definition Document

6

List of requirements that must be met in order for devices to be compatible with
the latest version of Android.

For example section 9 deals with “Security Model Compatibility” and contains
subsections relating to:

• Permissions

• Premium SMS warning

• Security Features (e.g. SELinux)

• Data Storage Encryption

• Automotive Vehicle System Isolation

https://source.android.com/compatibility/cdd

#RSAC#RSAC

Android system image analysis challenges

#RSAC#RSAC

Case study #1

Device monitoring and dynamic analysis challenges

#RSAC

It started with an application

9

 <receiver android:name="com.[redacted].receiver.AppMonitorReceiver">

 <intent-filter>

 <action android:name="com.[redacted].appmonitor.app_onCreate"/>

 <action android:name="com.[redacted].appmonitor.app_onResume"/>

 <action android:name="com.[redacted].appmonitor.load_url"/>

 </intent-filter>

 </receiver>

 public void onReceive(android.content.Context context, android.content.Intent intent) {

 String action = intent.getAction();

 if (action.equals(this.load_url_intent)) {

 addsURLAndPackNameToDatabase(context, intent);

}

public void addsURLAndPackNameToDatabase(android.content.Context context, android.content.Intent intent) {

 String url = intent.getStringExtra("url");

 String packname = intent.getStringExtra("packname");

 addURLInfoToDatabase(context, url, packname);

 }

Odd intent names?

Expects two
extra fields

Adds data to the database

#RSAC

Additional (unused) method in the AOSP Activity class

 private void sendNewAppBroadcast() {

 String lastpkg = System.getString(this.getContentResolver(), "lastpkg");

 String curpkg = this.mActivityInfo.applicationInfo.packageName;

 if(lastpkg == null || !lastpkg.equals(curpkg)) {

 Intent it = new Intent();

 it.setAction("com.[redacted].app_onResume");

 it.putExtra("packname", curpkg);

 this.sendBroadcast(it);

 }

 }

10

#RSAC

Additional (used) method in the AOSP WebView class

11

 public void loadUrl(String url) {

 this.checkThread();

 Log.d("WebView", "loadUrl=" + url);

 this.mProvider.loadUrl(url);

 Application initialApplication = AppGlobals.getInitialApplication();

 if(initialApplication != null && (URLUtil.isNetworkUrl(url))) {

 Intent it = new Intent();

 it.setAction("com.[redacted].load_url");

 it.putExtra("url", url);

 it.putExtra("packname", initialApplication.getPackageName());

 initialApplication.getApplicationContext().sendBroadcast(it);

 }

 }

Regular code

Appended code

#RSAC#RSAC

We worked with the OEM to provide a system update which

removes the additional code.

To protect users before they get the system update, the app

that gathers information is disabled by Play Protect.

#RSAC

Dynamic analysis - challenges

13

• The apps need specific AOSP modifications in order to work
• The apps need specific devices / drivers in order to work
• The apps that you’re trying to install are already on the device

(see below)

$ adb install com.android.systemui.apk
adb: failed to install com.android.systemui.apk: Failure [INSTALL_FAILED_VERSION_DOWNGRADE]

$ adb install com.android.systemui.apk
Failure [INSTALL_FAILED_OLDER_SDK]

$ adb install com.android.systemui.apk
adb: failed to install com.android.systemui.apk: Failure [INSTALL_FAILED_UPDATE_INCOMPATIBLE:
Package com.android.systemui signatures do not match the previously installed version; ignoring!]

#RSAC

Is there a way to make dynamic analysis work?

14

You have to use some of the same methods OEMs use:

• Have your own modified Android image on the emulator
• Sign apps with your own “platform” key
• Install them in /system by moving the APK files to the /system

partition

However, if the Android framework is modified you don’t have enough
luck and you have to resort to static analysis, which leads us to...

#RSAC#RSAC

Case study #2

Triada and the complexity of static analysis

#RSAC

Triada history

Triada rooting Trojan was first described by Kaspersky in March 2016

System level backdoor in summer 2017 (described by Dr Web in July 2017)

Since then we worked with the OEMs to remove Triada from all the
devices, both old and new

This double XOR loop with two

ASCII-printable passwords is one of the

defining characteristic of Triada

Triada, from the early rooting trojan days was investing heavily in code injection and the system-level backdoor pushed
it even further...

#RSAC

Backdooring the AOSP log function

17

This line of code was added

Code was injected to com.android.systemui in order to have the GET_REAL_TASKS permission

Code was also injected to com.android.vending to allow for these operations:

Triada backdoored the log function
to perform code injects

1. 下载请求
2. 下载结果
3. 安装请求
4. 安装结果
5. 激活请求
6. 激活结果
7. 拉活请求
8. 拉活结果
9. 卸载请求

10. 卸载结果

1. download request
2. download result
3. install request (uses real, unpopular Google Play package names)
4. installation result
5. activation request
6. activation result
7. pull request
8. pull the results
9. uninstall request

10. uninstall result

#RSAC

Complex communication mechanisms

18

Installed app

Framework backdoor

Play System UI

Code injectionCode injection

Java properties

Log lines

socket

intent
C&C

C&C

#RSAC#RSAC

We worked with all the affected OEMs to provide system

updates which remove Triada.

#RSAC

Aside: how did it get on the device?

20

OEM

(the company that sells the device)

3rd party vendors

(provide additional features)
3rd party vendors

(provide additional features)
3rd party vendors

(provide additional features)

3rd party vendors

(companies that provide additional
features)

sends a whole system image

adds additional features to the system
image…

… including Triada

sends back the system image…

… not mentioning Triada

#RSAC

How to make static analysis work?

21

● Take a look at the whole system image (including binaries,
services and non-standard file objects)

● Take a look at the framework files - they may have additional
code

● Try to understand the ecosystem of a system image holistically -
which process interacts with which app and what are the
SELinux rules, which brings us to...

#RSAC#RSAC

Case study #3

App update framework and sometimes things aren’t what they seem

#RSAC

App update framework

23

Executes in several stages (original naming):

0. check system directory

1. check debug status

2. check if rooted

3. register signal handler and do miscellaneous work

4. create communicate fifo

5. check main imei status

6. check dual sim status

7. add predefined system task

8. enter main loop

Binary running as root on the system image
in the /bin directory

/data/[redacted]/fifo_in

binary

/data/[redacted]/fifo_out

#RSAC

Two ways to pass the commands

24

Passed through the fifo_in file:

● run the argument as a shell script

● kill a specific process by name or pid

● execute arguments as a command

● prints arguments to fifo_out

● downloads a file

Passed as an argument:

● remount the /system partition as rw

● download a shell script file from the C&C and

executes it

● upload any file to the remote server

● print the version of the binary

● execute a binary given as an argument

#RSAC

Dialer app creates commands

25

public static boolean handleCode(android.content.Context context, String code) {

 String command = 0;

 if (code.equals("*#9381#*")) { command = "#update{-g} [...] -upc\n"; }

 if (code.equals("*#9382#*")) { command = "#update{-g} [...] -upi\n"; }

...

 java.io.File fifo_in = new java.io.File("/data/[redacted]/fifo_in");

 java.io.FileOutputStream task_pool = new java.io.FileOutputStream(fifo_in);

 byte[] to_write = command.getBytes();

 task_pool.write(to_write, 0, to_write.length);

 task_pool.flush();

 task_pool.close();

 return true;

 }

#RSAC

… but it cannot be abused

26

09-05 13:54:33.737 14164 14164 W com.[app_name]: type=1400 audit(0.0:249): avc: denied { write } for

comm=77726974657220746872656164 name="fifo_in" dev="mmcblk0p20"

ino=202404_JL.ver.0A.0a.11scontext=u:r:untrusted_app:s0:c512,c768 tcontext=u:object_r:[...]data_file:s0

tclass=fifo_file permissive=0

Untrusted app cannot write into the fifo_in file due to SELinux

 if (calling_uid)

 {

 printf("set uid to %d\n", calling_uid);

 setuid(calling_uid);

 }

 if (calling_gid)

 {

 printf("set gid to %d\n", calling_gid);

 setgid(calling_gid);

 }

And the binary drops privileges...

#RSAC#RSAC

We worked with the OEM to audit their security

configurations and make sure it cannot be abused.

#RSAC

Can build fingerprint by itself be used to identify a device?

28

All of these build fingerprints are for non-CTS, non-Samsung devices

https://source.android.com/compatibility/android-cdd.html#3_2_2_build_parameters

#RSAC

Are all the apps on /system preinstalled?

29

Rooting trojans can remount
the /system partition and move
there to avoid uninstallation.

Although Verified Boot
prevents it on newer Android
devices.

https://source.android.com/security/verifiedboot

#RSAC#RSAC

Summary

#RSAC

Summary: preinstalled statistics for 2019

31

devices
protected

system
images

scannedthousand

50+preinstalled
applications

scannedmillion

3+
billion

2.5+

#RSAC

Researchers:

32

• We need more researchers working in the preinstalled app space.

• Understanding a few key differences when analyzing pre-installed
apps versus user-space apps can help your analysis be more
efficient.

• The Android ecosystem is vast with a diversity of OEMs & their
customizations. This comes with new and exciting features for users,
but also new and exciting challenges for security researchers.

#RSAC

Everyone else:

33

• Build Test Suite is used to scan all the system images for any preinstalled
malware, including system image updates

• We are also using in-the-wild monitoring to find new malware, including
preinstalled ones

• Google Play Protect alerts the user of any malware and removes or
disables them

• We are also working with the OEMs to provide system updates which
remove preinstalled malware

• Take a look at the Android Enterprise website at android.com/enterprise

http://android.com/enterprise

#RSAC

Thank you!

